Syntheses of asymmetric zinc phthalocyanines as sensitizer of Pt-loaded graphitic carbon nitride for efficient visible/near-IR-light-driven H2 production.

نویسندگان

  • Lijuan Yu
  • Xiaohu Zhang
  • Chuansheng Zhuang
  • Li Lin
  • Renjie Li
  • Tianyou Peng
چکیده

Zinc phthalocyanine (ZnPc) derivatives with asymmetric (Zn-tri-PcNc-2) or symmetric (Zn-tetrad-Nc) structure, which possess wide spectral response in the visible/near-IR light region, are synthesized and utilized as a sensitizer of graphitic carbon nitride (g-C3N4) with 0.5 wt% Pt-loading for photocatalytic H2 production. The experimental results indicate that Zn-tri-PcNc-2 exhibits much better photosensitization on g-C3N4 than Zn-tetrad-Nc under visible/near-IR light although Zn-tetrad-Nc possesses wider and stronger optical absorption property than Zn-tri-PcNc-2. Zn-tri-PcNc-2-Pt/g-C3N4 exhibits an average H2 production rate of 132 μmol h(-1), which is much better than that (26.1 μmol h(-1)) of Zn-tetrad-Nc-Pt/g-C3N4 under visible-light (λ ≥ 500 nm) irradiation. Moreover, Zn-tri-PcNc-2-Pt/g-C3N4 also shows much higher apparent quantum yield (AQY) than Zn-tetrad-Nc-Pt/g-C3N4 under red/near-IR light irradiation. Especially, Zn-tri-PcNc-2-Pt/g-C3N4 exhibits impressively higher AQY (1.07%) than that (0.22%) of the Zn-tetrad-Nc-Pt/g-C3N4 under 700 nm monochromatic light irradiation. The much better photoactivity of Zn-tri-PcNc-2-Pt/g-C3N4 than Zn-tetrad-Nc-Pt/g-C3N4 is caused by the asymmetric structure of Zn-tri-PcNc-2, which can result in the electronic orbital directionality of its excited state, much faster photogenerated electron transfer to g-C3N4, and higher red/near-IR light utilization efficiency as compared to Zn-tetrad-Nc-Pt/g-C3N4. The present results provide an important insight into the effects of molecular structure and optical absorption property of phthalocyanine derivatives on the photoactivity of the dye-sensitized semiconductor, and also guide us to further improve the solar energy conversion efficiency by optimizing the molecular structure and effectively utilizing the visible/near-IR light of sunlight.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient co-catalysts for photocatalytic hydrogen evolution under visible light.

Platinum (Pt) nanoparticles with <4 nm diameter loaded on graphitic carbon nitride (g-C3N4) by reduction at 673 K behave as efficient co-catalysts for photocatalytic hydrogen evolution under visible light (λ >420 nm). This is achieved by strong Pt-support interaction due to the high temperature treatment, which facilitates efficient transfer of photoformed conduction band electrons on g-C3N4 to...

متن کامل

Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane.

In this paper, noble-metal Pt nanoparticles of around 2.5 nm were deposited on graphitic carbon nitride (g-C3N4) synthesized by a chemical reduction process in ethylene glycol. Compared with pure g-C3N4, the resulting Pt-loaded g-C3N4 (Pt/CN) exhibited a considerable improvement in the photoreduction of CO2 to CH4 in the presence of water vapor at ambient temperature and atmospheric pressure un...

متن کامل

Enhancement of photocatalytic activity of ZnO–SiO2 by nano-sized Pt for efficient removal of dyes from wastewater effluents

In this work, ZnO/SiO2 nanoparticles were prepared using sol-gel method, and platinum particles were loaded on ZnO/SiO2 nanoparticles by photoreductive method. Samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The XRD patterns showed that the zinc oxide samples have a wurtzite structure (hexagonal phase...

متن کامل

Enhancement of photocatalytic activity of ZnO–SiO2 by nano-sized Pt for efficient removal of dyes from wastewater effluents

In this work, ZnO/SiO2 nanoparticles were prepared using sol-gel method, and platinum particles were loaded on ZnO/SiO2 nanoparticles by photoreductive method. Samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The XRD patterns showed that the zinc oxide samples have a wurtzite structure (hexagonal phase...

متن کامل

A new type of carbon nitride-based polymer composite for enhanced photocatalytic hydrogen production.

A new type of graphitic C3N4-based composite photocatalysts was designed and prepared by co-loading PEDOT as a hole transport pathway and Pt as an electron trap on C3N4. The as-prepared C3N4-PEDOT-Pt composites showed drastically enhanced activity for visible light-driven photocatalytic H2 production compared to those of C3N4-PEDOT and C3N4-Pt, possibly due to the spatial separation of the redu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 9  شماره 

صفحات  -

تاریخ انتشار 2014